1. (x + 1)/(x – 3) > 0
(x + 1)(x – 3) =
⌈x + 1 = 0 ⇒ x = -1
⌊x – 3 = 0 ⇒ x = 3
(x + 1)(x – 3) > 0
x ∈ (-∞; -1) ∪ (3; +∞)
x – 3 ≠ 0 ⇒ x ≠ 3
Պատ․ x ∈ (-∞; -1) ∪ (3; +∞)
2. (2x – 6)/(x + 4) ≤ 0
(2x – 6)(x + 4) = 0
⌈2x – 6 = 0 ⇒ x = 3
⌊x + 4 = 0 ⇒ x = -4
(2x – 6)(x + 4) ≤ 0
x ∈ [-4; 3]
x + 4 ≠ 0 ⇒ x ≠ -4
Պատ․ x ∈ (-4; 3]
3. ((x + 4)(3x – 6))/(2x + 10) > 0
(x + 4)(3x – 6)(2x + 10) = 0
⌈x + 4 = 0 ⇒ x = -4
|3x – 6 = 0 ⇒ x = 2
⌊2x + 10 = 0 ⇒ x = -5
(x + 4)(3x – 6)(2x + 10) > 0
x ∈ (-5; -4) ∪ (2; +∞)
2x + 10 ≠ 0 ⇒ x ≠ -5
Պատ․ x ∈ (-5; -4) ∪ (2; +∞)
4. (x – 3)/((2x – 4)(x + 5)) ≥ 0
(x – 3)(2x – 4)(x + 5) = 0
⌈x – 3 = 0 ⇒ x = 3
|2x – 4 = 0 ⇒ x = 2
⌊x + 5 = 0 ⇒ x = -5
(x – 3)(2x – 4)(x + 5) ≥ 0
x ∈ [-5; 2] ∪ [3; +∞)
2x – 4 ≠ 0 ⇒ x ≠ 2
x + 5 ≠ 0 ⇒ x ≠ -5
Պատ․ x ∈ (-5; 2) ∪ [3; +∞)
5.(x(x + 5))/((2x + 6)(x – 7)) ≥ 0
x(x + 5)(2x + 6)(x – 7) = 0
⌈x = 0
|x + 5 = 0 ⇒ x = -5
|2x + 6 = 0 ⇒ x = -3
⌊x – 7 = 0 ⇒ x = 7
x(x + 5)(2x + 6)(x – 7) ≥ 0
x ∈ (-∞; -5] ∪ [-3; 0] ∪ [7; +∞)
⌈2x + 6 ≠ 0 ⇒ x ≠ -3
⌊x – 7 ≠ 0 ⇒ x ≠ 7
Պատ․ x ∈ (-∞; -5] ∪ (-3; 0] ∪ (7; +∞)